
CoVE: Towards Confidential Computing on RISC-V Platforms

Ravi Sahita

 Rivos Inc.

 Portland, Oregon, USA

ravi@rivosinc.com

Atish Patra

 Rivos Inc.

Mtn. View, CA, USA

atishp@rivosinc.com

Vedvyas Shanbhogue

 Rivos Inc.

 Austin, TX, USA

 ved@rivosinc.com

Samuel Ortiz

 Rivos Inc.

 Montpellier, France

sameo@rivosinc.com

Andrew Bresticker

 Rivos Inc.

 New York, NY, USA

abrestic@rivosinc.com

Dylan Reid

 Rivos Inc.

 Mtn. View, CA, USA

 dylan@rivosinc.com

Atul Khare

 Rivos Inc.

 Seattle, WA, USA

atulkhare@rivosinc.com

Rajnesh Kanwal

 Rivos Inc.

 Watford, England, UK

 rkanwal@rivosinc.com

ABSTRACT

Multi-tenant computing platforms are typically comprised of

several software and hardware components including platform

firmware, host operating system kernel, virtualization monitor, and

the actual tenant payloads that run on them (typically in a virtual

machine, container, or application). This model is well established

in large scale commercial deployment, but the downside is that all

platform components and operators are in the Trusted Computing

Base (TCB) of the tenant. This aspect is ill-suited for privacy-

oriented workloads that aim to minimize the TCB footprint.

Confidential computing presents a good stepping-stone towards

providing a quantifiable TCB for computing. Confidential

computing [1] requires the use of a HW-attested Trusted Execution

Environments for data-in-use protection. The RISC-V architecture

presents a strong foundation for meeting the requirements for

Confidential Computing and other security paradigms in a clean

slate manner. This paper describes a reference architecture and

discusses ISA, non-ISA and system-on-chip (SoC) requirements

for confidential computing on RISC-V Platforms. It discusses

proposed ISA and non-ISA Extension for Confidential Virtual

Machine for RISC-V platforms, referred to as CoVE.

1. RISC-V ISA and usages

A RISC-V hardware thread (hart) runs at a privilege level encoded

as a mode in one or more CSRs (control and status registers). Three

RISC-V privilege levels [2] currently defined are in Table 1.

Privilege levels are used to provide protection between different

components of the software stack and attempts to perform

operations not permitted by the current privilege mode will cause

an exception to be raised. These exceptions will normally cause

traps into an underlying (higher privilege) execution environment.
Level Encoding Name Abbreviation

0 00 User/Application U

1 01 Supervisor S

2 10 Reserved

3 11 Machine M

Table 1: RISC-V privilege levels

The machine level has the highest privileges and is the only

mandatory privilege level for a RISC-V hardware platform. Code

run in machine-mode (M-mode) is usually inherently trusted, as it

has low-level access to the machine implementation. User-mode

(U-mode) and supervisor-mode (S-mode) are intended for

conventional application and operating system usage, respectively.

Each privilege level has a core set of privileged ISA extensions with

optional extensions and variants. For example, supervisor mode

extended to support hypervisor execution and is utilized in CoVE

(described in Section 3). Implementations might provide anywhere

from 1 to 3 privilege modes trading off reduced isolation for lower

implementation cost. All hardware implementations must provide

M-mode, as this is the only mode that has unfettered access to the

whole machine.

RISC-V supports privileged instructions to context switch in order

to make requests to privileged environment or to return execution

to a lower-privileged environment after trap-handling. ECALL is

used to make a request to a higher privileged environment, and

MRET and SRET are used to return to S-mode and U-mode

privilege levels respectively.

2. Adversary and Basic Threat Model

The classes of adversaries considered are:

• Unprivileged Software adversary - includes software

executing in User-mode managed by Supervisor-mode system

software. This adversary can access user-mode CSRs,

process/task memory, CPU registers in the process context.

• System Software adversary - includes system software

executing in Supervisor or virtual-supervisor modes. Such an

adversary can access privileged CSRs, assigned system

memory, CPU registers, IO devices and induce device access.

• Startup Software adversary - includes system software

executing at boot (Machine-mode), including BIOS, memory

configuration, device firmware that can access system

memory, CPU registers, critical IO devices and IOMMU.

mailto:email@email.com

CoVE: Towards Confidential Computing on RISC-V platforms R. Sahita et al.

• Simple Hardware adversary - includes hardware attacks such

as bus interposers to snoop on memory/device interfaces,

voltage/clock glitching, observe electromagnetic and other

radiation, analyze power usage through instrumentation or

tapping of power rails, which may give the adversary the

ability to tamper with data in memory.

• Advanced Hardware adversary - includes attacks with

unlimited physical access to the devices, and those that use

mechanisms to tamper-with or reverse-engineer the hardware

TCB, such as, key extraction using capabilities such as

scanning electron microscopes, fib attacks, invasive de-cap,

and supply chain attacks.

• Side/Covert Channel Adversary - includes attacks that

leverage any explicit/implicit shared state (architectural or

micro-architectural) to leak information across privilege

boundaries via inference of characteristics from the shared

resources (e.g., caches, branch prediction state, internal micro-

architectural buffers, queues). Such attacks may require use of

high-precision timers to leak information.

The main classes of threats to be considered are loss of

confidentiality, integrity or replay-protection for a confidential

workload’s data-in-use. The data-in-use may be in memory or in

internal hardware state and may be attacked via:

• in-band CPU access (software access via CPU load/store ISA).

• side-band CPU accesses due to software-induced side

channels causing confidentiality loss which fall into these four

sub-categories -

o transient execution side-channel attacks in TCB

components or workloads e.g., via shared caches,

branch predictor poisoning, page-faults stepping.

o architectural side-channel attacks due to shared

cache and other shared resources e.g., prime/probe,

flush/reload.

o access to ciphertext with known plaintext to launch

a dictionary attack on memory encryption keys.

o side-channels due to performance monitoring and/or

debug state.

• side-band software-induced memory changes e.g., row-

hammer causing integrity loss.

• unauthorized external DMA from devices/accelerators.

• side-band CPU accesses by firmware by

o physical memory aliasing

o tampering with critical configurations (decoders,

routing tables for IO fabrics)

• incorrect execution of workload, due to

o malicious injection of faults.

o dropping interrupts.

o manipulation of time from M-mode CSRs.

• software or hardware attacks causing malicious address

translation via attacks on MMU, IOMMU structures in

memory, and associated translation caching structures in

hardware (e.g., Translation lookaside buffers, paging level

caches)

• hardware attacks on CPU/critical HW co-processors (e.g.,

RoT) conducted by

o glitching, fault injection and other physical attacks.

o exposed interface/links to other CPU sockets,

memory.

o hardware trojans, and supply chain attacks.

• cryptographic attacks by exploiting weakness in the

cryptographic methods/protocols used for sealing confidential

data or attestation.

• downgrading/forging TCB of the system (or TCB-derived

information such as attestation evidence) to unsafe

configurations, older (buggy) versions or loading/rolling back

to malicious software, firmware components.

While protecting the confidentiality and integrity of tenant

workload data-in-use is paramount; protecting against threats

emanating from the workload on the host availability is also in

scope –i.e., to prevent a confidential workload from causing a

denial of service on the host platform. On the other hand, the

reverse, protecting the availability of confidential workloads, is out

of scope of this threat model.

3. RISC-V Hypervisor Extension

The RISC-V hypervisor extension virtualizes the supervisor-level

architecture to support the efficient hosting of guest operating

systems using a type-1 or type-2 hypervisor. The hypervisor

extension changes supervisor mode into hypervisor-extended

supervisor mode (HS-mode – See Table 2), where a hypervisor or

a hosting-capable operating system runs. The hypervisor extension

adds another stage (G-stage) of address translation, from guest

physical addresses to supervisor physical addresses, to virtualize

the memory and memory mapped I/O subsystems for a guest

operating system. HS-mode acts the same as S-mode, but with

additional instructions and CSRs that control the new stage of

address translation and support hosting a guest OS in virtual S-

mode (VS-mode). S-mode operating systems can execute without

modification either in HS-mode or as VS-mode guests.

Table 2: RISC-V Privilege Levels and Virtualization Mode

3.1 RISC-V CoVE

This section describes the proposed model of using the RISC-V

Hypervisor extension to support CoVE. CoVE proposes non-ISA

and ISA extensions for spatial and temporal isolation of a new HS-

mode software module called the Trusted Execution

Environment Security Manager (TSM) to manage security

properties for workload assets to protect against access from the

host operating system and hypervisor. Isolation of the TSM from

the host is supported by ISA-extensions (described in Section 4)

used by an HW-attested Machine-mode TCB component called the

CoVE: Towards Confidential Computing on RISC-V platforms R. Sahita et al.

TSM-driver. The TSM enforces the isolation properties between

workloads running as Confidential Virtual Machines using G-stage

page tables. Confidential Virtual Machines are referred to as CoVE

TEE Virtual Machines or CoVE TVMs.

Figure 1: RISC-V CoVE reference architecture

The CoVE TCB consists of the TSM that acts as the TCB

intermediary between TEE and non-TEE components. The SoC

Root-of-trust (RoT) measures both the TSM-driver and the TSM to

support attestation. The design of the TSM components is minimal

in functionality – focusing only on security property enforcement

for TEE VMs. The TCB also includes the hardware elements

(processor and system-on-chip) that enforce confidentiality and

integrity properties for workload data-in-use. The VMM is

untrusted and continues to manage the resources for all workloads

- confidential and non-confidential.

CoVE enables the OS/VMM to maintain the role of resource

manager, with full bare-metal control of platform resources, even

for the TVMs. The resources managed by the untrusted OS/VMM

include memory, CPU, I/O resources and platform capabilities to

execute the TVM workload. Using the H-extension as the ISA

contract for confidential workloads allows most workloads to be

moved to a TVM with no application re-factoring required and

improves usability [4]. This approach enables the broadest use of

ISA primitives and minimizes ISA changes specific to confidential

workload reducing complexity, TCB and validation burden.

The TSM memory isolation from the host is achieved by new

hardware isolation primitives proposed in CoVE called Memory

Tracking Table (MTT) which allows the hypervisor to donate

memory regions (and pages) to CoVE TVMs – with tracking and

assignment policy set by the TSM-driver and the TSM. Memory

isolated/access-controlled by the MTT is inaccessible to the host

and may be additionally protected against physical access via

cryptographic mechanisms (to enforce confidentiality, integrity and

replay protection). Access to confidential memory regions is

enforced in hardware via a Confidential qualifier maintained per

hart. This mode/qualifier is enabled per-hart via TEECALL (a

horizontal trap that is implemented via an ECALL and MRET), and

disabled via TEERET – these context switch flows are supported

by the TSM-driver. Access to confidential memory is allowed for

the hart only when the confidential qualifier is set. Section 4 delves

into the details of these extensions.

The TSM-driver delegates TSM isolation functions to the TSM,

specifically, assignment and isolation of confidential memory to

TVMs. The TSM-driver performs the following TCB functions:

- Bootstrap spatial and temporal isolation of the TSM via

MMU extensions (MTT, IOMMU.)

- Context switching of hardware state for TSM execution

(via ECALL, MRET)

- Firmware root-of-trust interface to the HW RoT to

support attestation of the TCB.

The TSM interacts with the machine specific capabilities in the

platform through the ABI it exposes to the host. The TSM provided

ABI has the following functions:

- A COVH-ABI to manage the lifecycle of the TVM, such

as creating TVMs, adding pages and virtual-harts to a

TVM, scheduling a TVM virtual-hart for execution.

- An ABI to the TVM contexts, called COVG-ABI, to

enable the TVM workload to request attestation functions,

memory sharing/un-sharing functions or para-virtualized

IO functions.

- A third COVI-SBI to manage secure interrupt facilities

(using RISC-V Advanced Interrupt Architecture [11]).

The TSM functionality is by-design limited to support the

necessary security primitives to ensure that the OS/VMM and non-

confidential VMs do not violate the security of the TVMs through

the resource management actions of the OS/VMM. These security

primitives require the TSM to enforce TVM virtual-hart state save

and restore, and invariants for memory assigned to the TVM

(including G-stage translation). The host OS/VMM provides the

typical VM resource management functionality for memory, IO.

More than one TVM may be hosted by the host OS/VMM. Each

TVM may consist of guest firmware, a guest OS and applications.

TVM execution is similar to a non-confidential VM operation with

the exception that the TVM address space can be comprised of

confidential and non-confidential regions. The former includes

both measured pages (that are part of the initial TVM payload), and

confidential zero-pages that can be mapped-in on demand by the

VMM following runtime accesses by the TVM. The non-

confidential TVM-defined regions include those for shared-pages

used for para-virtualized IO. The TVM OS kernel is expected to be

enlightened to use the COVG-ABI to retrieve attestation evidence

to provide to a remote relying party to evaluate the CoVE TCB.

In Section 4 through Section 6, we describe the ISA, non-ISA

(ABIs) and non-ISA (SoC) capabilities that form the building

blocks of RISC-V CoVE.

CoVE: Towards Confidential Computing on RISC-V platforms R. Sahita et al.

4. ISA Capabilities

The following ISA extensions enforce the security properties for

CoVE workloads and enable it to scale in a performant manner to

large scale server platforms.

4.1 Confidential Qualifier for RISC-V hart

Isolating TVMs from the host software requires additional spatial

and temporal isolation primitives. The goal is to allow host

software to retain the privileged mode of operation while providing

separation between non-TCB and TCB elements, specifically the

host hypervisor, the TSM and TVM workloads. To address this gap,

CoVE proposes a “Confidential-mode qualifier” maintained per

processing element (e.g., hart) which is propagated into Physical

Memory Protection (PMP), MMU lookups and the SoC fabric. This

qualifier is minimally 1 bit of state in the hart; additional bits may

be carried on the fabric to convey additional categories or modes of

access to the platform. Table 3 shows the different modes of

operation with the Confidential qualifier included. The PMP, MMU

extensions for spatial isolation using this model are described in

Section 4.2.

4.2. Domain Assignment of Memory and Devices

Beyond the Confidential qualifier on processing elements to enable

TCB firmware to assert Confidential-mode of operation, we also

require the ability to isolate physical address to enforce exclusive

ownership of memory and devices to security domains (such as

confidential domains) and map to properties such as

confidentiality/integrity, even when the host software has full

control of the existing access-control mechanisms such as page

tables (MMU) and/or physical memory protection registers (PMP).

This section describes the Domain Assignment Physical Memory

Attribute (PMA) mechanism that addresses this requirement – this

attribute is a dynamic property associated with memory that may

be assigned or revoked for separate isolation domains. A domain in

this usage is simply isolated physical address regions.

The physical memory map for a complete system includes various

address ranges, some ranges may support specific properties, and

some may not. In RISC-V systems, these properties of each region

of the machine’s physical address space are called physical

memory attributes (PMAs). PMAs are checked by a hardware PMA

Checker for any access to physical memory, including accesses that

have undergone virtual to physical memory translation. Typically,

all memory is equally accessible for software within a privilege

level - there is no ISA mechanism to support isolation within a

privilege level – this gap can be addressed by an additional level of

dynamic PMA enforcement - a Domain Assignment PMA is

proposed - the idea is to maintain meta-data per physical memory

region (and page) that assigns domain ownership. The meta-data

can be a minimal 1-bit (specified as C bit in this paper) or can hold

additional meta-data and can be associated with PMPs on systems

with only M or M/U support, or enforced via MMU extensions on

systems that support M, S/H, and U levels. In this proposal, a MMU

extension that looks up an in-memory Memory Tracking Table

(MTT Figure 2) extension is used to enforce domain assignment.

Table 3: Hart confidential qualifier and privilege modes
Virtualization

Mode (V)

Nominal

Privilege

Confidential

Qualifier

(C)

Abbreviation

and Name

Address

translation

0 U 0 U-mode (User

mode)

[Single stage

/bare] + [PMP] +

MTT

0 S 0 HS-mode

(Hypervisor-

extended

supervisor

mode)

[Single stage/

/bare] + [PMP] +

MTT

0 M 0 M-mode

(Machine Mode)

Bare (TSM-

driver in TCB) *

1 U 0 VU-mode

(virtual user)

[Two-stage

translation] +

[PMP] + MTT

1 S 0 VS-mode

(virtual

supervisor)

1 U 1 Confidential

VU-mode

(virtual user)

[Two-stage

translation] +

[PMP] + MTT

 1 S 1 Confidential VS-

mode (virtual

supervisor)

*M-mode isolation is an ongoing discussion in the RISC-V security community

(currently M-mode TCB may be restricted by de-privileging components to U or S-

mode) – alternately the TSM-driver functionality may be subsumed into CPU ISA.

The hart with MTT enabled must enforce the following properties:

- A hart in non-Confidential-mode must not be able to access

memory that is tracked via the MTT as confidential (isolated for a

different isolation domain).

- A hart associated with a confidential workload must be the only

ones allowed to access the memory owned by that workload per the

MTT; such harts may choose to access globally shared memory to

support IO use cases. Additional properties required for

confidential workloads may be enforced, such as code fetch and

page walks should always be via confidential memory.

Figure 2: Memory Tracking Table Enforcement

The MTT capability remains under the control of the TCB – by

associating its programming interface with the Confidential

qualifier of the hart – thus allowing specifically the TSM-driver and

the TSM (delegated explicitly by the TSM-driver) to dynamically

manage it. The C bit (and potentially additional metadata bits can

CoVE: Towards Confidential Computing on RISC-V platforms R. Sahita et al.

select cryptographic key(s) to enforce additional physical memory

protection for confidential memory vs non-confidential memory.

Implementations may choose to use separate keys associated with

TVM workloads.

Another key requirement is the temporal isolation of the hart

context state for the TSM – the memory isolation model described

above can support the state isolation activated by a Domain context

switch. In CoVE, these domain context switch flows may be

implemented via non-ISA ABIs – the CoVE reference architecture

(in Figure 1) describes new ECALL flows (TEECALL, TEERET)

for isolation between the untrusted host hypervisor and the TSM –

orchestrated via the TSM-driver in M-mode. This flow can also be

subsumed by the hart and implemented as ISA to achieve the

context switch using domain isolated memory.

The goal is to create a common flow to invoke TCB components

which can be exercised via untrusted M-mode to invoke trusted M-

mode components. The flow can be extended to lower privilege

levels by the M-mode TCB component.

4.3. Confidential Interrupts

The RISC-V Advanced Interrupt Architecture [11] defines

virtualization of interrupt files for VS-mode guests. The

requirement introduced for confidential computing is to isolate (and

reserve) guest interrupt files associated with TVMs (VS-mode level

register files) – this is supported via the Confidential-mode

qualifier for interrupt files, and via MTT for Memory-resident

Interrupt Files. Access to the state of the TEE-assigned VS level

register file when a hart is not in Confidential-mode must cause an

illegal instruction exception (when V==0) or virtual instruction

exception (when V==1). The interrupt delivery model is unchanged.

5. Non-ISA [SW ABIs]

The lifecycle of a CoVE TVM goes through phases of TVM build

and initialization, execution and related runtime interactions with

the host and finally teardown and reclamation of resources

allocated to the TVM. These operations are carried out by the TSM

when invoked by the host OS/VMM via the COVH-ABI or by the

TVM via the COVG-ABI.

Executing confidential workloads in a CoVE TVM requires a

sequence of one or more of the steps detailed below. These steps

performed by the untrusted OS/VMM (host) or the TVM invoke

the TSM to enforce security invariants.

• Platform TSM detection and capability enumeration – detects

presence, version and capabilities of the TSM.

• Conversion of non-confidential memory to confidential

memory: intrinsic that allows VMM to donate memory TVMs.

• Trusted VM (TVM) creation: intrinsic that allocates

confidential memory to host TVM state.

• Donating confidential memory pages to the TSM for TVM

page mapping via G-stage paging structures.

• Defining TVM memory regions: Allocates TVM address

space as confidential or non-confidential and predicates

subsequent memory assignment to these address spaces.

• Initializing TVM code and data payload to confidential-

memory regions: as part of the TVM build process, this

intrinsic drive the measurement of memory as well as zeroing

non-measured memory pages.

• Creating TVM VCPUs: allocation of confidential memory

pages to host TVM virtual hart context. The context structures

are saved/restored by the TSM prior to/after TVM execution.

• Finalizing TVM creation: These intrinsic is used to complete

the TVM measurement process for attestation.

• TVM execution: Intrinsic used for scheduling, injection of

interrupts, and handling TVM faults and exits.

• Mapping TVM demand-zero confidential memory regions:

enables lazy addition of memory into the TVM. The TSM

verifies that assignment and mapping properties for

confidential memory is not violated.

• Mapping TVM non-confidential shared pages – enables

shared memory on-demand mapping into TVM shared

memory regions used for IO or controlled CPU state sharing.

The TSM verifies that assignment and mapping properties for

confidential memory is not violated.

• Tearing down TVMs – intrinsic to stop a TVM execution and

de-allocate confidential memory resources (back to the TSM).

• Reassignment of confidential memory – intrinsic to re-use

unassigned confidential memory with the TSM enforcing

mutual exclusive ownership of confidential memory to TVMs.

• Reclaiming confidential memory – intrinsic used to convert

memory from confidential back to non-confidential so it can

be used for non-confidential VMs/host workloads.

Details of the ABI functions can be found in the detailed RVI CoVE

specification [3] developed in the AP-TEE Task Group.

6. Non-ISA [SoC Capabilities]

This section describes platform capabilities that supplement the

hart capabilities required for confidential computing.

6.1 SoC Root-of-trust

The RoT hardware engine is the root of measurement, reporting and

updates for the platform Trusted Compute Base (TCB). It manages

the SoC security life cycle, key material and hence should be

certified by the silicon manufacturer. The RoT verifies the

configuration of SOC firmware and hardware modules and

implements a Device Identity Composition Engine (TCG DICE

[5]), where each TCB layer measures the next layer and provisions

credentials. RoT-rooted measurements of workloads may then be

verified by a relying party using an attestation protocol. An

attestation protocol is used to verify the trust chain from hardware

to the TCB firmware including the TSM-driver and the TSM. Each

TVM derives its own attestation certificate from the TSM to

support standard attestation protocols using a framework such as

IETF RATS [6].

CoVE: Towards Confidential Computing on RISC-V platforms R. Sahita et al.

6.2. SoC considerations for Confidential Memory

Workload data-in-use stored outside the SoC package (such as

memory) may require explicit cryptographic protection. Usage of

memory on the platform starts off as untrusted resources in the non-

confidential world and transition to their confidential analogue via

the TSM which uses the SOC-specific mechanisms to activate

protection for the memory against host accesses. Once the

conversion process is complete, the VMM may assign confidential

memory to a TVM via the TSM. A converted confidential resource

can be freely assigned to another TVM when it is no longer in use.

However, the VMM must reclaim an unused confidential resource

for use in the non-confidential world (this is tracked and enforced

by the TSM).

To meet these requirements, the SoC must map the domain

assignment PMA to the transactions to SOC memory controller(s)

and fabric to differentiate between confidential and non-

confidential memory traffic. The isolation qualifiers (including

Confidentiality-mode bit) must be enforced within the SOC caches

using access-control, encryption, integrity and replay protection

appropriate to the threat model being addressed. An example

mapping is in Figure 3.

6.3. SoC Platform Data Protection

Large scale server platform requires Reliability, Availability and

Serviceability (RAS). Also, platform debug and performance

monitoring are critical functions to tune and debug workloads.

However, these facilities can be leveraged as attack vectors and the

SoC must provide appropriate controls to ensure that confidential

data is not maliciously accessed via these mechanisms.

To mitigate attacks from platform mechanisms for RAS, QoS,

debug and performance monitoring, appropriate authorization

techniques [12] must be used to activate these mechanisms with

opt-in controls provided to the TVM (recorded by the RoT and

enforced by the TSM and TSM-driver) to give explicit control over

TVM runtime state exposed to the host. Lastly, activation of debug

and performance monitoring is explicitly reported in the attestation

posture of specific TVMs.

6.4. SoC IO and Devices

Binding devices to TVMs expands the TCB of the TVM and brings

in new threats, such as spoofing of device identifiers on the fabric,

exposure of data on the link to the device, device firmware tamper,

malicious programming of IOMMU and IO bridges.

Attaching devices to TVMs requires SOC support in I/O bridges

and root ports to be able to protect the link from the IO bridge to

the device. A pre-condition to set up end-to-end protection of the

data sent to the device is to validate the authenticity of the device.

There are active standardization activities for protocols to validate

device certificates via DMTF SPDM [7], as well as protect the

integrity and confidentiality of data on fabrics such as PCIe using

IDE [8]. The TSM may control the trust state of device interfaces

Figure 3: SOC view of Conf. qualifier & domain assignment

at a fine-granular assignment (virtual functions) via the PCIe TEE

Device Interface Security Protocol (TDISP [9]). On the SOC side,

RISC-V is pursing IO-PMP to be able to isolate IO controller

programming interfaces to the TCB elements. Similarly, the

proposed RISC-V IOMMU [10] can provide dedicated secure

programming interfaces that can be enforced by the hart in

Confidential-mode so that the TSM can program the IOMMU and

enforce TVM security properties are met.

7. Related Work

This section is a brief survey of related commercial or academic

TEE approaches.

Keystone [13] implements a security monitor using RISC-V M-

mode firmware and uses PMPs to isolate enclaves. As defined,

Keystone does not provide support for VM enclaves. Keystone

enclaves are built out of contiguous memory which limits

scalability for post-boot OS memory management for enclaves.

Each enclave requires a PMP entry; the architecture can support N-

2 enclaves for N hardware PMP registers. In contrast, CoVE uses

the MTT to provide confidential memory isolation and uses the G-

stage page tables for confidential memory assignment, simplifying

OS memory management as it operates in architectural page sizes.

Intel TDX [14] executes TVMs in a mode called Secure Arbitration

which is analog to functions of the CoVE TSM. The TDX module

is a software component that operates in CPU VMX-root mode.

Intel TDX splits the TVM address space into a private and shared

address space and uses a Secure-EPT (equivalent of a G-stage page

table in CoVE) to manage confidential memory assignment. Each

Trust Domain is assigned a unique ephemeral key for memory

encryption. TVM private memory and Secure-EPT pages are

protected against tamper by using an optional cryptographic

integrity mechanism using a truncated MAC store along with

CoVE: Towards Confidential Computing on RISC-V platforms R. Sahita et al.

memory ECC (which restricts reliability mechanisms). Intel TDX

supports remote attestation based on hardware-rooted keys. Intel

TDX embeds the memory encryption key identifier in the physical

address which restricts scalability.

AMD SEV-ES-SNP [15] uses a platform security processor (PSP)

as the firmware TCB component to encrypt the TVM, with each

TVM assigned an ephemeral memory encryption key. SNP uses a

Reverse Map Table to track memory ownership by mapping a host

address to the guest address associated with the page. However, the

reverse lookup is enforced only for writes, allowing exposure to

ciphertext. The PSP can limit scalability for large core systems and

frequent trusted operations (such as page migration). AMD SEV

provides support for hardware-rooted remote attestation.

ARM CCA [16] introduces Realm VMs that execute under the

control of a Realm Management Monitor (RMM) – which executes

as a peer to the untrusted hypervisor – it is the analog of the CoVE

TSM. CCA extends ARM ISA to invoke the RMM from the host.

Isolation between the realm and the other contexts is provided via

a Granule Protection Table (GPT) used to track memory ownership

on all accesses. Realms provides support for hardware remote

attestation.

A common drawback of all the above approaches is the lack of

support for Confidential IO – an ongoing area of work.

8. Conclusion and Future Work

The paper described CoVE, the first application-class processor

framework for scalable support for Confidential VMs on RISC-V

platforms running rich operating systems and hypervisors. The

foundational extensions required for RISC-V platforms to support

confidential VMs were described. These extensions are being

developed in the RVI technical groups towards ratification on

RISC-V platforms. An active open-source proof of concept

implementation of CoVE is hosted at Github [17].

ACKNOWLEDGMENTS

The authors would like to acknowledge the technical discussions

and feedback from contributors in the RISC-V International forums

where the ISA, non-ISA and platform specifications are being

discussed for ratification, namely: Security Horizontal Committee

(HC), Trusted Computing Special Interest Group (SIG),

Application-Processor Trusted Execution Environment Task

Group (TG), Privileged Architecture TG, Platform Runtime

Services TG, Hypervisor SIG and SOC Infrastructure SIG.

REFERENCES

[1] Confidential Computing Consortium (2022) Common Terminology for

Confidential Computing, Available at: https://confidentialcomputing.io/wp-

content/uploads/sites/85/2023/01/Common-Terminology-for-Confidential-

Computing.pdf (Accessed: March 2, 2023).

[2] Waterman, A., Asanović, K., Hauser, J. et al. (2021) The RISC-V Instruction Set

Manual Volume II: Privileged Architecture, GitHub. RISC-V International.

Available at: https://github.com/riscv/riscv-isa-manual (Accessed: February 26,

2023).

[3] Sahita, R. et al. (2023) Confidential computing on RISC-V: Application-

Processor Trusted Execution Environment (AP-TEE). GitHub. RISC-V

International. Available at: https://github.com/riscv-non-isa/riscv-ap-tee

(Accessed: February 26, 2023)

[4] Mark Russinovich, Manuel Costa, Cédric Fournet, David Chisnall, Antoine

Delignat-Lavaud, Sylvan Clebsch, Kapil Vaswani, and Vikas Bhatia. (2021)

Toward Confidential Cloud Computing: Extending hardware-enforced

cryptographic protection to data while in use. Queue 19, 1, Pages 20 (January-

February 2021), 28 pages. https://doi.org/10.1145/3454122.3456125

[5] Dominik Lorych and Lukas Jäger. (2022) Design Space Exploration of DICE. In

The 17th International Conference on Availability, Reliability and Security

[6] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan. (2023) Remote

ATtestation procedureS (RATS) Architecture. RFC Editor. Retrieved from

https://www.rfc-editor.org/info/rfc9334 (Accessed: March 2, 2023)

[7] Brett Henning et al. (2022) Security Protocol and Data Mode (SPDM)

Architecture White Paper. DMTF. DSP2058. Version 1.2.0. Available at:

https://www.dmtf.org/sites/default/files/standards/documents/DSP2058_1.2.0.p

df (Accessed: March 2, 2023)

[8] Claire Ying. (2021) Why IDE Security Technology for PCIe and CXL? (2021).

Cadence. Available at: https://www.chipestimate.com/Why-IDE-Security-

Technology-for-PCIe-and-CXL/Cadence/blogs/3512 (Accessed: March 2, 2023)

[9] Richard Solomon. (2023) New PCIe TDISP Architecture Secures Device

Interfaces with Virtual Servers. Synopsys. Available at:

https://blogs.synopsys.com/from-silicon-to-software/2023/02/08/what-is-tdisp-

pcie-io-virtualization/ (Accessed: March 2, 2023)

[10] Vedvyas Shanbhogue et al. (2023) RISC-V IOMMU Architecture Specification.

Github. RISC-V International. Available at: https://github.com/riscv-non-

isa/riscv-iommu/blob/main/riscv-iommu.pdf

[11] John Hauser et al. (2023) RISC-V Advanced Interrupt Architecture. Version 1.0-

RC2. Github. RISC-V International. Available at: https://github.com/riscv/riscv-

aia/releases/download/1.0-RC2/riscv-interrupts-1.0-RC2.pdf

[12] Tim Newsome et al. (2019) RISC-V External Debug Support version 0.13.2.

RISC-V International. Available at: https://riscv.org/wp-

content/uploads/2019/03/riscv-debug-release.pdf (Accessed: March 2, 2023)

[13] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn

Song. 2020. Keystone: an open framework for architecting trusted execution

environments. In Proceedings of the Fifteenth European Conference on

Computer Systems (EuroSys '20). Association for Computing Machinery, New

York, NY, USA, Article 38, 1–16. https://doi.org/10.1145/3342195.3387532

[14] R. Sahita et al., 2021. Security analysis of confidential-compute instruction set

architecture for virtualized workloads, 2021 International Symposium on Secure

and Private Execution Environment Design (SEED), Washington, DC, USA,

2021, pp. 121-131, doi: 10.1109/SEED51797.2021.00024.

[15] Advanced Micro Devices, Inc. (2020), AMD SEV-SNP: Strengthening VM

Isolation with Integrity Protection and More. AMD White Paper. Available at:

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-

isolation-with-integrity-protection-and-more.pdf (Accessed: March 2, 2023)

[16] Mark Knight, Gareth Stockwell. October 2021. Arm Confidential Compute

Architecture. In Proceedings of the Hardware and Architectural Support for

Security and Privacy (HASP) 2021. Available at:

https://haspworkshop.org/2021/slides/HASP-2021-Session2-Arm-CCA.pdf

(Accessed: March 2, 2023)

[17] Salus: RISC-V hypervisor for TEE development (2023). GitHub. Rivos Inc.

Available at: https://github.com/rivosinc/salus (Accessed: April 10, 2023)

