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ABSTRACT 

Multi-tenant computing platforms are typically comprised of 

several software and hardware components including platform 

firmware, host operating system kernel, virtualization monitor, and 

the actual tenant payloads that run on them (typically in a virtual 

machine, container, or application). This model is well established 

in large scale commercial deployment, but the downside is that all 

platform components and operators are in the Trusted Computing 

Base (TCB) of the tenant. This aspect is ill-suited for privacy-

oriented workloads that aim to minimize the TCB footprint. 

Confidential computing presents a good stepping-stone towards 

providing a quantifiable TCB for computing. Confidential 

computing [1] requires the use of a HW-attested Trusted Execution 

Environments for data-in-use protection. The RISC-V architecture 

presents a strong foundation for meeting the requirements for 

Confidential Computing and other security paradigms in a clean 

slate manner. This paper describes a reference architecture and 

discusses ISA, non-ISA and system-on-chip (SoC) requirements 

for confidential computing on RISC-V Platforms. It discusses 

proposed ISA and non-ISA Extension for Confidential Virtual 

Machine for RISC-V platforms, referred to as CoVE. 

1. RISC-V ISA and usages 

A RISC-V hardware thread (hart) runs at a privilege level encoded 

as a mode in one or more CSRs (control and status registers). Three 

RISC-V privilege levels [2] currently defined are in Table 1. 

Privilege levels are used to provide protection between different 

components of the software stack and attempts to perform 

operations not permitted by the current privilege mode will cause 

an exception to be raised. These exceptions will normally cause 

traps into an underlying (higher privilege) execution environment. 
Level Encoding Name Abbreviation 

0 00 User/Application U 

1 01 Supervisor S 

2 10 Reserved  

3 11 Machine M 

Table 1: RISC-V privilege levels 

 

The machine level has the highest privileges and is the only 

mandatory privilege level for a RISC-V hardware platform. Code 

run in machine-mode (M-mode) is usually inherently trusted, as it 

has low-level access to the machine implementation. User-mode 

(U-mode) and supervisor-mode (S-mode) are intended for 

conventional application and operating system usage, respectively. 

Each privilege level has a core set of privileged ISA extensions with 

optional extensions and variants. For example, supervisor mode 

extended to support hypervisor execution and is utilized in CoVE 

(described in Section 3). Implementations might provide anywhere 

from 1 to 3 privilege modes trading off reduced isolation for lower 

implementation cost. All hardware implementations must provide 

M-mode, as this is the only mode that has unfettered access to the 

whole machine. 

RISC-V supports privileged instructions to context switch in order 

to make requests to privileged environment or to return execution 

to a lower-privileged environment after trap-handling. ECALL is 

used to make a request to a higher privileged environment, and 

MRET and SRET are used to return to S-mode and U-mode 

privilege levels respectively. 

2. Adversary and Basic Threat Model 

The classes of adversaries considered are:  

• Unprivileged Software adversary - includes software 

executing in User-mode managed by Supervisor-mode system 

software. This adversary can access user-mode CSRs, 

process/task memory, CPU registers in the process context. 

• System Software adversary - includes system software 

executing in Supervisor or virtual-supervisor modes. Such an 

adversary can access privileged CSRs, assigned system 

memory, CPU registers, IO devices and induce device access. 

• Startup Software adversary - includes system software 

executing at boot (Machine-mode), including BIOS, memory 

configuration, device firmware that can access system 

memory, CPU registers, critical IO devices and IOMMU. 
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• Simple Hardware adversary - includes hardware attacks such 

as bus interposers to snoop on memory/device interfaces, 

voltage/clock glitching, observe electromagnetic and other 

radiation, analyze power usage through instrumentation or 

tapping of power rails, which may give the adversary the 

ability to tamper with data in memory. 

• Advanced Hardware adversary - includes attacks with 

unlimited physical access to the devices, and those that use 

mechanisms to tamper-with or reverse-engineer the hardware 

TCB, such as, key extraction using capabilities such as 

scanning electron microscopes, fib attacks, invasive de-cap, 

and supply chain attacks. 

• Side/Covert Channel Adversary - includes attacks that 

leverage any explicit/implicit shared state (architectural or 

micro-architectural) to leak information across privilege 

boundaries via inference of characteristics from the shared 

resources (e.g., caches, branch prediction state, internal micro-

architectural buffers, queues). Such attacks may require use of 

high-precision timers to leak information.  

 

The main classes of threats to be considered are loss of 

confidentiality, integrity or replay-protection for a confidential 

workload’s data-in-use. The data-in-use may be in memory or in 

internal hardware state and may be attacked via:  

• in-band CPU access (software access via CPU load/store ISA). 

• side-band CPU accesses due to software-induced side 

channels causing confidentiality loss which fall into these four 

sub-categories - 

o transient execution side-channel attacks in TCB 

components or workloads e.g., via shared caches, 

branch predictor poisoning, page-faults stepping. 

o architectural side-channel attacks due to shared 

cache and other shared resources e.g., prime/probe, 

flush/reload. 

o access to ciphertext with known plaintext to launch 

a dictionary attack on memory encryption keys. 

o side-channels due to performance monitoring and/or 

debug state. 

• side-band software-induced memory changes e.g., row-

hammer causing integrity loss. 

• unauthorized external DMA from devices/accelerators. 

• side-band CPU accesses by firmware by  

o physical memory aliasing  

o tampering with critical configurations (decoders, 

routing tables for IO fabrics) 

• incorrect execution of workload, due to  

o malicious injection of faults. 

o dropping interrupts. 

o manipulation of time from M-mode CSRs.  

• software or hardware attacks causing malicious address 

translation via attacks on MMU, IOMMU structures in 

memory, and associated translation caching structures in 

hardware (e.g., Translation lookaside buffers, paging level 

caches) 

• hardware attacks on CPU/critical HW co-processors (e.g., 

RoT) conducted by 

o glitching, fault injection and other physical attacks. 

o exposed interface/links to other CPU sockets, 

memory. 

o hardware trojans, and supply chain attacks. 

• cryptographic attacks by exploiting weakness in the 

cryptographic methods/protocols used for sealing confidential 

data or attestation. 

• downgrading/forging TCB of the system (or TCB-derived 

information such as attestation evidence) to unsafe 

configurations, older (buggy) versions or loading/rolling back 

to malicious software, firmware components.  

 

While protecting the confidentiality and integrity of tenant 

workload data-in-use is paramount; protecting against threats 

emanating from the workload on the host availability is also in 

scope –i.e., to prevent a confidential workload from causing a 

denial of service on the host platform. On the other hand, the 

reverse, protecting the availability of confidential workloads, is out 

of scope of this threat model. 

3. RISC-V Hypervisor Extension 

The RISC-V hypervisor extension virtualizes the supervisor-level 

architecture to support the efficient hosting of guest operating 

systems using a type-1 or type-2 hypervisor. The hypervisor 

extension changes supervisor mode into hypervisor-extended 

supervisor mode (HS-mode – See Table 2), where a hypervisor or 

a hosting-capable operating system runs. The hypervisor extension 

adds another stage (G-stage) of address translation, from guest 

physical addresses to supervisor physical addresses, to virtualize 

the memory and memory mapped I/O subsystems for a guest 

operating system. HS-mode acts the same as S-mode, but with 

additional instructions and CSRs that control the new stage of 

address translation and support hosting a guest OS in virtual S-

mode (VS-mode). S-mode operating systems can execute without 

modification either in HS-mode or as VS-mode guests. 

Table 2: RISC-V Privilege Levels and Virtualization Mode 

3.1 RISC-V CoVE 

This section describes the proposed model of using the RISC-V 

Hypervisor extension to support CoVE. CoVE proposes non-ISA 

and ISA extensions for spatial and temporal isolation of a new HS-

mode software module called the Trusted Execution 

Environment Security Manager (TSM) to manage security 

properties for workload assets to protect against access from the 

host operating system and hypervisor. Isolation of the TSM from 

the host is supported by ISA-extensions (described in Section 4) 

used by an HW-attested Machine-mode TCB component called the 
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TSM-driver. The TSM enforces the isolation properties between 

workloads running as Confidential Virtual Machines using G-stage 

page tables.  Confidential Virtual Machines are referred to as CoVE 

TEE Virtual Machines or CoVE TVMs.  

 

 
Figure 1: RISC-V CoVE reference architecture 

 

The CoVE TCB consists of the TSM that acts as the TCB 

intermediary between TEE and non-TEE components. The SoC 

Root-of-trust (RoT) measures both the TSM-driver and the TSM to 

support attestation. The design of the TSM components is minimal 

in functionality – focusing only on security property enforcement 

for TEE VMs. The TCB also includes the hardware elements 

(processor and system-on-chip) that enforce confidentiality and 

integrity properties for workload data-in-use. The VMM is 

untrusted and continues to manage the resources for all workloads 

- confidential and non-confidential.  

 

CoVE enables the OS/VMM to maintain the role of resource 

manager, with full bare-metal control of platform resources, even 

for the TVMs. The resources managed by the untrusted OS/VMM 

include memory, CPU, I/O resources and platform capabilities to 

execute the TVM workload. Using the H-extension as the ISA 

contract for confidential workloads allows most workloads to be 

moved to a TVM with no application re-factoring required and 

improves usability [4]. This approach enables the broadest use of 

ISA primitives and minimizes ISA changes specific to confidential 

workload reducing complexity, TCB and validation burden. 

 

The TSM memory isolation from the host is achieved by new 

hardware isolation primitives proposed in CoVE called Memory 

Tracking Table (MTT) which allows the hypervisor to donate 

memory regions (and pages) to CoVE TVMs – with tracking and 

assignment policy set by the TSM-driver and the TSM. Memory 

isolated/access-controlled by the MTT is inaccessible to the host 

and may be additionally protected against physical access via 

cryptographic mechanisms (to enforce confidentiality, integrity and 

replay protection). Access to confidential memory regions is 

enforced in hardware via a Confidential qualifier maintained per 

hart. This mode/qualifier is enabled per-hart via TEECALL (a 

horizontal trap that is implemented via an ECALL and MRET), and 

disabled via TEERET – these context switch flows are supported 

by the TSM-driver. Access to confidential memory is allowed for 

the hart only when the confidential qualifier is set. Section 4 delves 

into the details of these extensions. 

 

The TSM-driver delegates TSM isolation functions to the TSM, 

specifically, assignment and isolation of confidential memory to 

TVMs. The TSM-driver performs the following TCB functions:  

- Bootstrap spatial and temporal isolation of the TSM via 

MMU extensions (MTT, IOMMU.) 

- Context switching of hardware state for TSM execution 

(via ECALL, MRET) 

- Firmware root-of-trust interface to the HW RoT to 

support attestation of the TCB. 

 

The TSM interacts with the machine specific capabilities in the 

platform through the ABI it exposes to the host. The TSM provided 

ABI has the following functions: 

 

- A COVH-ABI to manage the lifecycle of the TVM, such 

as creating TVMs, adding pages and virtual-harts to a 

TVM, scheduling a TVM virtual-hart for execution. 

- An ABI to the TVM contexts, called COVG-ABI, to 

enable the TVM workload to request attestation functions, 

memory sharing/un-sharing functions or para-virtualized 

IO functions.  

- A third COVI-SBI to manage secure interrupt facilities 

(using RISC-V Advanced Interrupt Architecture [11]).  

 

The TSM functionality is by-design limited to support the 

necessary security primitives to ensure that the OS/VMM and non-

confidential VMs do not violate the security of the TVMs through 

the resource management actions of the OS/VMM. These security 

primitives require the TSM to enforce TVM virtual-hart state save 

and restore, and invariants for memory assigned to the TVM 

(including G-stage translation). The host OS/VMM provides the 

typical VM resource management functionality for memory, IO. 

More than one TVM may be hosted by the host OS/VMM. Each 

TVM may consist of guest firmware, a guest OS and applications. 

TVM execution is similar to a non-confidential VM operation with 

the exception that the TVM address space can be comprised of 

confidential and non-confidential regions. The former includes 

both measured pages (that are part of the initial TVM payload), and 

confidential zero-pages that can be mapped-in on demand by the 

VMM following runtime accesses by the TVM. The non-

confidential TVM-defined regions include those for shared-pages 

used for para-virtualized IO. The TVM OS kernel is expected to be 

enlightened to use the COVG-ABI to retrieve attestation evidence 

to provide to a remote relying party to evaluate the CoVE TCB.  

In Section 4 through Section 6, we describe the ISA, non-ISA 

(ABIs) and non-ISA (SoC) capabilities that form the building 

blocks of RISC-V CoVE. 
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4. ISA Capabilities 

The following ISA extensions enforce the security properties for 

CoVE workloads and enable it to scale in a performant manner to 

large scale server platforms. 

4.1 Confidential Qualifier for RISC-V hart 

Isolating TVMs from the host software requires additional spatial 

and temporal isolation primitives. The goal is to allow host 

software to retain the privileged mode of operation while providing 

separation between non-TCB and TCB elements, specifically the 

host hypervisor, the TSM and TVM workloads. To address this gap, 

CoVE proposes a “Confidential-mode qualifier” maintained per 

processing element (e.g., hart) which is propagated into Physical 

Memory Protection (PMP), MMU lookups and the SoC fabric. This 

qualifier is minimally 1 bit of state in the hart; additional bits may 

be carried on the fabric to convey additional categories or modes of 

access to the platform. Table 3 shows the different modes of 

operation with the Confidential qualifier included. The PMP, MMU 

extensions for spatial isolation using this model are described in 

Section 4.2. 

4.2. Domain Assignment of Memory and Devices  

Beyond the Confidential qualifier on processing elements to enable 

TCB firmware to assert Confidential-mode of operation, we also 

require the ability to isolate physical address to enforce exclusive 

ownership of memory and devices to security domains (such as 

confidential domains) and map to properties such as 

confidentiality/integrity, even when the host software has full 

control of the existing access-control mechanisms such as page 

tables (MMU) and/or physical memory protection registers (PMP).  

This section describes the Domain Assignment Physical Memory 

Attribute (PMA) mechanism that addresses this requirement – this 

attribute is a dynamic property associated with memory that may 

be assigned or revoked for separate isolation domains. A domain in 

this usage is simply isolated physical address regions. 

 

The physical memory map for a complete system includes various 

address ranges, some ranges may support specific properties, and 

some may not. In RISC-V systems, these properties of each region 

of the machine’s physical address space are called physical 

memory attributes (PMAs). PMAs are checked by a hardware PMA 

Checker for any access to physical memory, including accesses that 

have undergone virtual to physical memory translation. Typically, 

all memory is equally accessible for software within a privilege 

level - there is no ISA mechanism to support isolation within a 

privilege level – this gap can be addressed by an additional level of 

dynamic PMA enforcement - a Domain Assignment PMA is 

proposed - the idea is to maintain meta-data per physical memory 

region (and page) that assigns domain ownership. The meta-data 

can be a minimal 1-bit (specified as C bit in this paper) or can hold 

additional meta-data and can be associated with PMPs on systems 

with only M or M/U support, or enforced via MMU extensions on 

systems that support M, S/H, and U levels. In this proposal, a MMU 

extension that looks up an in-memory Memory Tracking Table 

(MTT Figure 2) extension is used to enforce domain assignment. 

 

Table 3: Hart confidential qualifier and privilege modes 
Virtualization 

Mode (V) 

Nominal 

Privilege 

Confidential 

Qualifier 

(C) 

Abbreviation 

and Name 

Address 

translation 

0 U 0 U-mode (User 

mode) 

[Single stage 

/bare] + [PMP] + 

MTT 

0 S 0 HS-mode 

(Hypervisor-

extended 

supervisor 

mode) 

[Single stage/ 

/bare] + [PMP] + 

MTT 

0 M 0 M-mode 

(Machine Mode) 

Bare (TSM-

driver in TCB) * 

1 U 0 VU-mode 

(virtual user) 

[Two-stage 

translation] + 

[PMP] + MTT 

 

1 S 0 VS-mode 

(virtual 

supervisor) 

1 U 1 Confidential 

VU-mode 

(virtual user) 

[Two-stage 

translation] + 

[PMP] + MTT 

 1 S 1 Confidential VS-

mode (virtual 

supervisor) 

*M-mode isolation is an ongoing discussion in the RISC-V security community 

(currently M-mode TCB may be restricted by de-privileging components to U or S-

mode) – alternately the TSM-driver functionality may be subsumed into CPU ISA. 

 

The hart with MTT enabled must enforce the following properties: 

- A hart in non-Confidential-mode must not be able to access 

memory that is tracked via the MTT as confidential (isolated for a 

different isolation domain). 

- A hart associated with a confidential workload must be the only 

ones allowed to access the memory owned by that workload per the 

MTT; such harts may choose to access globally shared memory to 

support IO use cases. Additional properties required for 

confidential workloads may be enforced, such as code fetch and 

page walks should always be via confidential memory. 

 

 
Figure 2: Memory Tracking Table Enforcement 

 

The MTT capability remains under the control of the TCB – by 

associating its programming interface with the Confidential 

qualifier of the hart – thus allowing specifically the TSM-driver and 

the TSM (delegated explicitly by the TSM-driver) to dynamically 

manage it. The C bit (and potentially additional metadata bits can 
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select cryptographic key(s) to enforce additional physical memory 

protection for confidential memory vs non-confidential memory. 

Implementations may choose to use separate keys associated with 

TVM workloads. 

 

Another key requirement is the temporal isolation of the hart 

context state for the TSM – the memory isolation model described 

above can support the state isolation activated by a Domain context 

switch. In CoVE, these domain context switch flows may be 

implemented via non-ISA ABIs – the CoVE reference architecture 

(in Figure 1) describes new ECALL flows (TEECALL, TEERET) 

for isolation between the untrusted host hypervisor and the TSM – 

orchestrated via the TSM-driver in M-mode. This flow can also be 

subsumed by the hart and implemented as ISA to achieve the 

context switch using domain isolated memory. 

 

The goal is to create a common flow to invoke TCB components 

which can be exercised via untrusted M-mode to invoke trusted M-

mode components. The flow can be extended to lower privilege 

levels by the M-mode TCB component. 

4.3. Confidential Interrupts 

The RISC-V Advanced Interrupt Architecture [11] defines 

virtualization of interrupt files for VS-mode guests. The 

requirement introduced for confidential computing is to isolate (and 

reserve) guest interrupt files associated with TVMs (VS-mode level 

register files) – this is supported via the Confidential-mode 

qualifier for interrupt files, and via MTT for Memory-resident 

Interrupt Files. Access to the state of the TEE-assigned VS level 

register file when a hart is not in Confidential-mode must cause an 

illegal instruction exception (when V==0) or virtual instruction 

exception (when V==1). The interrupt delivery model is unchanged. 

5. Non-ISA [SW ABIs] 

The lifecycle of a CoVE TVM goes through phases of TVM build 

and initialization, execution and related runtime interactions with 

the host and finally teardown and reclamation of resources 

allocated to the TVM. These operations are carried out by the TSM 

when invoked by the host OS/VMM via the COVH-ABI or by the 

TVM via the COVG-ABI. 

 

Executing confidential workloads in a CoVE TVM requires a 

sequence of one or more of the steps detailed below. These steps 

performed by the untrusted OS/VMM (host) or the TVM invoke 

the TSM to enforce security invariants. 

• Platform TSM detection and capability enumeration – detects 

presence, version and capabilities of the TSM.  

• Conversion of non-confidential memory to confidential 

memory: intrinsic that allows VMM to donate memory TVMs.  

• Trusted VM (TVM) creation: intrinsic that allocates 

confidential memory to host TVM state. 

• Donating confidential memory pages to the TSM for TVM 

page mapping via G-stage paging structures.  

• Defining TVM memory regions: Allocates TVM address 

space as confidential or non-confidential and predicates 

subsequent memory assignment to these address spaces. 

• Initializing TVM code and data payload to confidential-

memory regions: as part of the TVM build process, this 

intrinsic drive the measurement of memory as well as zeroing 

non-measured memory pages. 

• Creating TVM VCPUs: allocation of confidential memory 

pages to host TVM virtual hart context. The context structures 

are saved/restored by the TSM prior to/after TVM execution. 

• Finalizing TVM creation: These intrinsic is used to complete 

the TVM measurement process for attestation. 

• TVM execution: Intrinsic used for scheduling, injection of 

interrupts, and handling TVM faults and exits. 

• Mapping TVM demand-zero confidential memory regions: 

enables lazy addition of memory into the TVM. The TSM 

verifies that assignment and mapping properties for 

confidential memory is not violated. 

• Mapping TVM non-confidential shared pages – enables 

shared memory on-demand mapping into TVM shared 

memory regions used for IO or controlled CPU state sharing. 

The TSM verifies that assignment and mapping properties for 

confidential memory is not violated. 

• Tearing down TVMs – intrinsic to stop a TVM execution and 

de-allocate confidential memory resources (back to the TSM). 

• Reassignment of confidential memory – intrinsic to re-use 

unassigned confidential memory with the TSM enforcing 

mutual exclusive ownership of confidential memory to TVMs. 

• Reclaiming confidential memory – intrinsic used to convert 

memory from confidential back to non-confidential so it can 

be used for non-confidential VMs/host workloads. 

Details of the ABI functions can be found in the detailed RVI CoVE 

specification [3] developed in the AP-TEE Task Group. 

6. Non-ISA [SoC Capabilities] 

This section describes platform capabilities that supplement the 

hart capabilities required for confidential computing. 

6.1 SoC Root-of-trust 

The RoT hardware engine is the root of measurement, reporting and 

updates for the platform Trusted Compute Base (TCB). It manages 

the SoC security life cycle, key material and hence should be 

certified by the silicon manufacturer. The RoT verifies the 

configuration of SOC firmware and hardware modules and 

implements a Device Identity Composition Engine (TCG DICE 

[5]), where each TCB layer measures the next layer and provisions 

credentials. RoT-rooted measurements of workloads may then be 

verified by a relying party using an attestation protocol. An 

attestation protocol is used to verify the trust chain from hardware 

to the TCB firmware including the TSM-driver and the TSM. Each 

TVM derives its own attestation certificate from the TSM to 

support standard attestation protocols using a framework such as 

IETF RATS [6].  



CoVE: Towards Confidential Computing on RISC-V platforms R. Sahita et al. 

 

 

 

6.2. SoC considerations for Confidential Memory 

Workload data-in-use stored outside the SoC package (such as 

memory) may require explicit cryptographic protection. Usage of 

memory on the platform starts off as untrusted resources in the non-

confidential world and transition to their confidential analogue via 

the TSM which uses the SOC-specific mechanisms to activate 

protection for the memory against host accesses. Once the 

conversion process is complete, the VMM may assign confidential 

memory to a TVM via the TSM. A converted confidential resource 

can be freely assigned to another TVM when it is no longer in use. 

However, the VMM must reclaim an unused confidential resource 

for use in the non-confidential world (this is tracked and enforced 

by the TSM).  

 

To meet these requirements, the SoC must map the domain 

assignment PMA to the transactions to SOC memory controller(s) 

and fabric to differentiate between confidential and non-

confidential memory traffic. The isolation qualifiers (including 

Confidentiality-mode bit) must be enforced within the SOC caches 

using access-control, encryption, integrity and replay protection 

appropriate to the threat model being addressed. An example 

mapping is in Figure 3. 

6.3. SoC Platform Data Protection 

Large scale server platform requires Reliability, Availability and 

Serviceability (RAS). Also, platform debug and performance 

monitoring are critical functions to tune and debug workloads. 

However, these facilities can be leveraged as attack vectors and the 

SoC must provide appropriate controls to ensure that confidential 

data is not maliciously accessed via these mechanisms.  

 

To mitigate attacks from platform mechanisms for RAS, QoS, 

debug and performance monitoring, appropriate authorization 

techniques [12] must be used to activate these mechanisms with 

opt-in controls provided to the TVM (recorded by the RoT and 

enforced by the TSM and TSM-driver) to give explicit control over 

TVM runtime state exposed to the host. Lastly, activation of debug 

and performance monitoring is explicitly reported in the attestation 

posture of specific TVMs. 

6.4. SoC IO and Devices 

Binding devices to TVMs expands the TCB of the TVM and brings 

in new threats, such as spoofing of device identifiers on the fabric, 

exposure of data on the link to the device, device firmware tamper, 

malicious programming of IOMMU and IO bridges. 

 

Attaching devices to TVMs requires SOC support in I/O bridges 

and root ports to be able to protect the link from the IO bridge to 

the device. A pre-condition to set up end-to-end protection of the 

data sent to the device is to validate the authenticity of the device. 

There are active standardization activities for protocols to validate 

device certificates via DMTF SPDM [7], as well as protect the 

integrity and confidentiality of data on fabrics such as PCIe using 

IDE [8]. The TSM may control the trust state of device interfaces  

 
Figure 3: SOC view of Conf. qualifier & domain assignment 

 

at a fine-granular assignment (virtual functions) via the PCIe TEE 

Device Interface Security Protocol (TDISP [9]). On the SOC side, 

RISC-V is pursing IO-PMP to be able to isolate IO controller 

programming interfaces to the TCB elements. Similarly, the 

proposed RISC-V IOMMU [10] can provide dedicated secure 

programming interfaces that can be enforced by the hart in 

Confidential-mode so that the TSM can program the IOMMU and 

enforce TVM security properties are met. 

7. Related Work 

This section is a brief survey of related commercial or academic 

TEE approaches.  

 

Keystone [13] implements a security monitor using RISC-V M-

mode firmware and uses PMPs to isolate enclaves. As defined, 

Keystone does not provide support for VM enclaves. Keystone 

enclaves are built out of contiguous memory which limits 

scalability for post-boot OS memory management for enclaves. 

Each enclave requires a PMP entry; the architecture can support N-

2 enclaves for N hardware PMP registers. In contrast, CoVE uses 

the MTT to provide confidential memory isolation and uses the G-

stage page tables for confidential memory assignment, simplifying 

OS memory management as it operates in architectural page sizes. 

 

Intel TDX [14] executes TVMs in a mode called Secure Arbitration 

which is analog to functions of the CoVE TSM. The TDX module 

is a software component that operates in CPU VMX-root mode. 

Intel TDX splits the TVM address space into a private and shared 

address space and uses a Secure-EPT (equivalent of a G-stage page 

table in CoVE) to manage confidential memory assignment. Each 

Trust Domain is assigned a unique ephemeral key for memory 

encryption. TVM private memory and Secure-EPT pages are 

protected against tamper by using an optional cryptographic 

integrity mechanism using a truncated MAC store along with 
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memory ECC (which restricts reliability mechanisms). Intel TDX 

supports remote attestation based on hardware-rooted keys. Intel 

TDX embeds the memory encryption key identifier in the physical 

address which restricts scalability. 

 

AMD SEV-ES-SNP [15] uses a platform security processor (PSP) 

as the firmware TCB component to encrypt the TVM, with each 

TVM assigned an ephemeral memory encryption key. SNP uses a 

Reverse Map Table to track memory ownership by mapping a host 

address to the guest address associated with the page. However, the 

reverse lookup is enforced only for writes, allowing exposure to 

ciphertext. The PSP can limit scalability for large core systems and 

frequent trusted operations (such as page migration). AMD SEV 

provides support for hardware-rooted remote attestation. 

 

ARM CCA [16] introduces Realm VMs that execute under the 

control of a Realm Management Monitor (RMM) – which executes 

as a peer to the untrusted hypervisor – it is the analog of the CoVE 

TSM. CCA extends ARM ISA to invoke the RMM from the host. 

Isolation between the realm and the other contexts is provided via 

a Granule Protection Table (GPT) used to track memory ownership 

on all accesses. Realms provides support for hardware remote 

attestation.  

 

A common drawback of all the above approaches is the lack of 

support for Confidential IO – an ongoing area of work. 

8. Conclusion and Future Work 

The paper described CoVE, the first application-class processor 

framework for scalable support for Confidential VMs on RISC-V 

platforms running rich operating systems and hypervisors. The 

foundational extensions required for RISC-V platforms to support 

confidential VMs were described. These extensions are being 

developed in the RVI technical groups towards ratification on 

RISC-V platforms. An active open-source proof of concept 

implementation of CoVE is hosted at Github [17]. 
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